Abstract

Since Thom first introduced the notion of the ‘dual’ of a Steenrod square, in (12), it has become apparent that calculation with such duals in the cohomology of, say, a simplicial complex X will often yield information about the impossibility of embedding X in Sn, for certain values of n. For example, the celebrated theorem that cannot be embedded in can easily be proved in this way. In this paper, we seek to generalize this method to any pair of extraordinary cohomology theories h* and k*, and natural stable cohomology operation θ: h* → k*. We show in section 3 that a simplicial embeddingf: X → Sn gives rise via the Alexander duality isomorphism to a homology operationwhich is independent of n, the particular embedding f, and even the particular triangulations of X and Sn. If h* and k* are multiplicative cohomology theories, there are Kronecker productsif h0(S0) = k0(S0) = G, a field, and the Kronecker products make h*, h* and k*, k* into dual vector spaces over G, then can be turned into a cohomology operation c(θ): k*(X)→h*(X), by using this duality. This is certainly true if h* = k* = H*(;Zp), p prime, and in this case we have the original situation considered by Thom, who showed, for example, that

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.