Abstract

Let p be an odd prime and q = 2(p−1). Up to total degree t−s < max{(5p3 +6p2 +6p+ 4)q − 10, p4q}, the generators of Hs,t(U(L)), the cohomology of the universal enveloping algebra of a bigraded Lie algebra L, are determined and their convergence is also verified. Furthermore our results reveal that this cohomology satisfies an analogous Poincare duality property. This largely generalizes an earlier classical results due to J. P. May.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.