Abstract

We consider the loci of d-elliptic curves in $M_2$, and corresponding loci of d-elliptic surfaces in $A_2$. We show how a description of these loci as quotients of a product of modular curves can be used to calculate cohomology of natural local systems on them, both as mixed Hodge structures and $\ell$-adic Galois representations. We study in particular the case d=2, and compute the Euler characteristic of the moduli space of n-pointed bi-elliptic genus 2 curves in the Grothendieck group of Hodge structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.