Abstract

A Rota-Baxter Leibniz algebra is a Leibniz algebra $(\mathfrak{g},[~,~]_{\mathfrak{g}})$ equipped with a Rota-Baxter operator $T : \mathfrak{g} \rightarrow \mathfrak{g}$. We define representation and dual representation of Rota-Baxter Leibniz algebras. Next, we define a cohomology theory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and formal deformation theory of Rota-Baxter Leibniz algebras and show that our cohomology is deformation cohomology. Moreover, We define an abelian extension of Rota-Baxter Leibniz algebras and show that equivalence classes of such extensions are related to the cohomology groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.