Abstract

Let k be a perfect field with cohomological dimension ≤ 2. Serre's conjecture II claims that the Galois cohomology set H1(k,G) is trivial for any simply connected semi-simple algebraic G/k and this conjecture is known for groups of type 1A n after Merkurjev–Suslin and for classical groups and groups of type F4 and G2 after Bayer–Parimala. For any maximal torus T of G/k, we study the map H1(k, T) → H1(k, G) using an induction process on the type of the groups, and it yields conjecture II for all quasi-split simply connected absolutely almost k-simple groups with type distinct from E8. We also have partial results for E8 and for some twisted forms of simply connected quasi-split groups. In particular, this method gives a new proof of Hasse principle for quasi-split groups over number fields including the E8-case, which is based on the Galois cohomology of maximal tori of such groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.