Abstract
We prove that the intersection cohomology (together with the perverse and the Hodge filtrations) for the moduli space of one-dimensional semistable sheaves supported in an ample curve class on a toric del Pezzo surface is independent of the Euler characteristic of the sheaves. We also prove an analogous result for the moduli space of semistable Higgs bundles with respect to an effective divisor $D$ of degree $\mathrm{deg}(D)>2g-2$. Our results confirm the cohomological $\chi$-independence conjecture by Bousseau for $\mathbb{P}^2$, and verify Toda's conjecture for Gopakumar-Vafa invariants for certain local curves and local surfaces. For the proof, we combine a generalized version of Ng\^o's support theorem, a dimension estimate for the stacky Hilbert-Chow morphism, and a splitting theorem for the morphism from the moduli stack to the good GIT quotient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.