Abstract

This paper addresses the residual stresses and their effect on microcracking in polycrystalline ceramic materials. Residual stresses at microstructural level in titanium diboride ceramics, as a result of thermal expansion anisotropy, were analyzed by finite element method using Clarke’s model. Damage mechanics based cohesive zone model was applied to study grain boundary microcracking, propagation and arrest. Quantitative relations between temperature variation, grain boundary energy, grain size, final microcrack length as well as microcracking temperature are established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.