Abstract

Cohesive zone (CZ) modelling has been receiving increasing attention from the asphaltic materials and pavement mechanics community as a mechanistic approach to model crack initiation and propagation in materials and structures. The CZ model provides a powerful and efficient tool that can be easily implemented in existing computational methods for brittle, quasi-brittle and ductile failure as well as interfacial fracture, all of which are frequently observed in asphaltic materials. Accordingly, this paper introduces the CZ modelling approach in the form of a state-of-the-art review addressing the concept of CZ modelling, CZ constitutive relations, their implementation into computational methods and up-to-date applications of CZ modelling to bituminous mixtures and pavement structures. This paper also includes a brief discussion on the current challenges that researchers face and the future directions to the modelling of fracture in bituminous materials and pavements. CZ modelling is not a topic that can be possibly discussed in a single article; therefore, it should be clearly noted that this review primarily attempts to deliver some of the core aspects of CZ modelling in the area of bituminous composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.