Abstract

Polymer-based laminated composite materials can fail by delamination. Cohesive zone development occurs during delamination, where dissipation mechanisms take place. Within a numerical framework, a fine discretization is needed along the cohesive zone length to accurately capture the non-linear stress distribution. Knowing the cohesive zone length beforehand is important for meshing purposes. This paper presents a literature review of existing analytic expressions. The limitations and range of applicability of the analytic formulas are discussed. Novel empirical formulas are proposed to predict the cohesive zone length of homogeneous orthotropic materials with a crack growing under pure mode I or pure mode II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.