Abstract
In order to maximize the substrate conversion, co-production of hydrogen and methane from two-stage anaerobic digestion has attracted wide attention. In two-stage fermentation process, the cohesive strategy is considered as a key indicator for bio-hythane yield. In this work, corncob powder was utilized as raw material. The pH of fermentative broth, bio-hythane yield, gas production rate and energy conversion efficiency were taken as indexes. Under the directional control of bio-chemical reaction process, the effects of diverse coupling time nodes on the fermentation process and the bio-hythane co-production potential were investigated. The results showed that when the coupling time node was 48 h, hydrogen production potential and methane production potential were 22.29 mL/g TS and 141.14 mL/g TS, respectively. The hydrogen content in the bio-hythane was 13.64% which satisfied the hydrogen concentration requirement, and the energy conversion efficiency was 27.6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.