Abstract

In this paper, we consider the problem of decentralized cohesive motion control of a formation of autonomous vehicles or robots moving in three dimensions, where the formation is required to move from its initial setting (defined by the positions of the agents in the formation) to a final desired setting, and during this motion, maintain its formation geometry defined by the initial distances between the agent pairs. We propose a distributed control scheme to solve this problem utilizing the notions of graph rigidity and persistence as well as techniques of virtual target tracking and smooth switching. The distributed control scheme is developed by modeling the agent kinematics as single-velocity integrator; nevertheless, extension to the cases with practical kinematic models of autonomous aerial and underwater vehicles is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.