Abstract
Low temperature cracking is the major distress observed in asphalt pavements in the northern US and Canada. In the past years fracture mechanics concepts were introduced to investigate the fracture properties of asphalt mixtures at low temperatures. In this paper the cohesive zone model (CZM) is used to describe the fracture behavior of asphalt mixtures at low temperatures and the interface element is used to numerically simulate the material response under monotonic loading. The simulation is calibrated with the experimental results from a newly proposed semi circular bend (SCB) test. A parametric analysis of the input material properties indicates that the tensile strength has a significant effect on the peak load in the SCB configuration, the modulus has a strong effect on the calculated stiffness of the SCB specimen, and the fracture energy influences the post-peak behavior of the asphalt mixtures. The calibrated numerical model was applied to simulate the low temperature cracking in a simplified asphalt pavement and to study the influence of these material parameters on the performance of asphalt pavements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.