Abstract

Abstract A numerical model of fatigue crack growth retardation in polymers induced by artificial crack closure is proposed. The approach relies on the combination of cohesive modeling and a contact algorithm incorporated in the wake of the advancing crack to account for the effect of the introduced wedge. Numerical results are compared with existing experimental observations, showing the ability of the cohesive model to capture the key features of wedge-induced crack retardation. A study is conducted to quantify the effects of relevant parameters such as applied load levels, wedge distance to the crack tip and wedge stiffness. The model is also discussed in the context of self-healing polymers [White SR, Sottos NR, Moore J, Geubelle PH, Kessler M, Brown E, et al. Autonomic healing of polymer composites. Nature 2001;409:794–7], where the wedging effect is associated with the polymerization of the healing agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.