Abstract
Recent advances in lithium-ion battery electrodes with huge volume changes during intercalation–deintercalation cycles are calling for studies on crack nucleation under diffusion induced stresses. Here we develop a cohesive model of crack nucleation in an initially crack-free strip electrode under galvanostatic intercalation and deintercalation processes. The analysis identifies a critical characteristic dimension below which crack nucleation becomes impossible. The critical size and other predictions of the model are compared to recent experiments on silicon nanowire electrodes. The results suggest nanostructured electrodes are highly promising for applications in high capacity batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.