Abstract
Avoidance of cracking damage due to hydration is an important objective in the design of nuclear reactor containments. Assessment of the safety against cracking requires a realistic material model and its effective numerical implementation. Toward this goal, the paper develops a comprehensive material model which includes approximate simulation of cracking based on the principles of cohesive fracture mechanics, as well as an up-to-date creep formulation with aging and temperature effects. A standard heat conduction model is incorporated in the analysis as well. Since the crack width is the most important characteristic of cracking damage, particular attention is paid to crack spacing which governs crack width. The results of stability analysis of parallel crack systems based on fracture mechanics are used to estimate the spacing of open cracks as a function of their depth. Numerical simulations clarifying various aspects of hydration heat effects are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.