Abstract

Although the age-related loss of bone quality has been implicated in bone fragility, a mechanistic understanding of the relationship is necessary for developing diagnostic and treatment modalities in the elderly population at risk of fracture. In this study, a finite element based cohesive zone model is developed and applied to human cortical bone in order to capture the experimentally shown rising crack growth behavior and age-related loss of bone toughness. The cohesive model developed here is based on a traction–crack opening displacement relationship representing the fracture processes in the vicinity of a propagating crack. The traction–displacement curve, defining the cohesive model, is composed of ascending and descending branches that incorporate material softening and nonlinearity. The results obtained indicate that, in contrast to initiation toughness, the finite element simulations of crack growth in compact tension (CT) specimens successfully capture the rising R-curve (propagation toughness) behavior and the age-related loss of bone toughness. In close correspondence with the experimentally observed decrease of 14–15% per decade, the finite element simulation results show a decrease of 13% in the R-curve slope per decade. The success of the simulations is a result of the ability of cohesive models to capture and predict the parameters related to bone fracture by representing the physical processes occurring in the vicinity of a propagating crack. These results illustrate that fracture mechanisms in the process zone control bone toughness and any modification to these would cause age-related toughness loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.