Abstract

Scc1/Mcd1 is a component of the cohesin complex that plays an essential role in sister chromatid cohesion in eukaryote cells. Knockout experiments of this gene have been described in budding yeast, fission yeast, and chicken cells, but no study has been reported on human Scc1 thus far. In this study, we found that an N-terminally truncated human Scc1 shows a dominant-negative effect, and we examined the phenotypes of human cells defective in Scc1 function. Scc1 defects led to failure of sister chromatid cohesion in both interphase and mitotic cells. Interestingly, four chromatids derived from two homologues occupied four distinct territories in the nucleus in chromosome painting experiments. In mitotic Scc1-defective cells, chromatids were disjoined with normal condensation, and the spindle-assembly checkpoint was activated. We also found that, although the disjoined kinetochore (half-kinetochore) in Scc1-defective cells contains CENP-A, -B, -C, and -E normally, it apparently does not establish the kinetochore-microtubule association. These results indicate that Scc1 is essential for the association of kinetochores with microtubules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.