Abstract

The complex life cycle of the human malaria parasite, Plasmodium falciparum, is driven by specific transcriptional programs, but it is unclear how most genes are activated or silenced at specific times. There is an association between transcription and spatial organization; however, the molecular mechanisms behind genome organization are unclear. While P. falciparum lacks key genome-organizing proteins found in metazoans, it has all core components of the cohesin complex. To investigate the role of cohesin in P. falciparum, we functionally characterize the cohesin subunit Structural Maintenance of Chromosomes protein 3 (SMC3). SMC3 knockdown during early stages of the intraerythrocytic developmental cycle (IDC) upregulates a subset of genes involved in erythrocyte egress and invasion, which are normally expressed at later stages. ChIP-seq analyses reveal that during the IDC, SMC3 enrichment at the promoter regions of these genes inversely correlates with gene expression and chromatin accessibility. These data suggest that SMC3 binding contributes to the repression of specific genes until their appropriate time of expression, revealing a new mode of stage-specific gene repression in P. falciparum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.