Abstract

We introduce a new technique for dealing with the matrix elements of the Hamiltonian operator in loop quantum gravity, based on the use of intertwiners projected on coherent states of angular momentum. We give explicit expressions for the projections of intertwiners on the spin coherent states in terms of complex numbers describing the unit vectors which label the coherent states. Operators such as the Hamiltonian can then be reformulated as differential operators acting on polynomials of these complex numbers. This makes it possible to describe the action of the Hamiltonian geometrically, in terms of the unit vectors originating from the angular momentum coherent states, and opens up a way towards investigating the semiclassical limit of the dynamics via asymptotic approximation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.