Abstract

For centuries, lens-based microscopy, such as optical, phase-contrast, fluorescence, confocal, and electron microscopy, has played an important role in the evolution of modern science and technology. In 1999, a novel form of microscopy, i.e., coherent diffraction imaging (also termed coherent diffraction microscopy or lensless imaging), was developed and transformed our conventional view of microscopy, in which the diffraction pattern of a noncrystalline specimen or a nanocrystal was first measured and then directly phased to obtain a high-resolution image. The well-known phase problem was solved by combining the oversampling method with iterative algorithms. In this paper, we will briefly discuss the principle of coherent diffraction imaging, present various implementation schemes of this imaging modality, and illustrate its broad applications in materials science, nanoscience, and biology. As coherent X-ray sources such as high harmonic generation and X-ray free-electron lasers are presently under rapid development worldwide, coherent diffraction imaging can potentially be applied to perform high-resolution imaging of materials/nanoscience and biological specimens at the femtosecond time scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call