Abstract

The influence of a localized inhomogeneity (oscillatory or stationary) on spatiotemporal chaotic state in an excitable reaction-diffusion system is investigated. We find that various coherent wave patterns, such as spiral waves (including multiarmed) and target wave patterns are able to be created by the inhomogeneity from the chaotic state. Due to the growth of these coherent wave patterns, the previously existing turbulent waves in the absence of inhomogeneity are suppressed. At last, the whole system is entrained by the coherent wave patterns. Closer investigations indicate that the possible mechanisms underlying the inhomogeneity sustained coherent wave patterns seem quite different for oscillatory and stationary inhomogeneities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call