Abstract
The fundamental understanding of electrochemistry urges accurate knowledge of all interfacial properties at the molecular level, but the retrieval of such information is a real challenge. Optical spectroscopies facilitated by surface plasmon enhancement can shed light on this field, yet past studies relied on either highly inhomogeneous "hot spots" or planar plasmon modes with limited enhancement. Here we report an in situ sum-frequency vibrational spectroscopy scheme using plasmonic nanogratings, which enable strong, coherent surface plasmon excitation even on planar electrodes. With two classical reactions, the gold oxidation and pyridine adsorption in water, we demonstrate the realization of coherent vibrational spectroscopy in the strong absorption region, revealing the polar orientation and ordering of interfacial species that are crucial toward the mechanistic understanding of electrochemical phenomena.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.