Abstract

A new technique for encoding and decoding of coherent ultrashort light pulses is analyzed. In particular, the temporal and statistical behavior of pseudonoise bursts generated by spectral phase coding of ultrashort optical pulses is discussed. the analysis is motivated by recent experiments that demonstrate high-resolution spectral phase coding of picosecond and femtosecond pulses and suggest the possibility of ultrahigh speed code-division multiple-access (CDMA) communications using this technique. The evolution of coherent ultrashort pulses into low intensity pseudonoise bursts as a function of the degree of phase coding is traced. The results are utilized to analyze the performance of a proposed CDMA optical communications system based upon encoding and decoding of ultrashort light pulses. The bit error rate (BER) is derived as a function of data rate, number of users, and receiver threshold, and the performance characteristics are discussed for a variety of system parameters. It is found that performance improves greatly with increasing code length. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.