Abstract

We consider a double quantum dot coupled to a one-dimensional superconducting quantum wire with Majorana bound states at the ends of the wire. We compute the conductance of the double dot in the coherent tunneling regime. When only one of the dots is coupled to one Majorana bound state the conductance is enhanced/diminished in the vicinity of zero voltage if it has minimum/maximum at this voltage with no Majorana bound state and has two local maximums/minimums at voltage equal plus or minus the Majorana bound states overlapping energy. When each dot is coupled to one Majorana bound state with zero overlapping energy it is possible by tuning the magnetic flux through the system to change the zero-voltage conductance from minimum to local maximum. We show that when both electron levels in the double quantum dot are below the right chemical potential the Fano resonance occurs only for the lower energy level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.