Abstract

Coherent laser light was tuned by cumulative refraction of light waves in a semiconductor laser cavity, while the wavelength of electroluminescence was not tuned by any noticeable amount. This effect is explained by the fact that the laser light has perfect spatial coherence, while the electroluminescence has a spatial coherence of 0.7 µm, smaller than the width of the wavefront. The refraction angle of 2.4 deg means that more than 16 triangular electrodes are involved in the refraction. This observation of coherent tuning may lead to a new optoelectronic device, a coherent filter, which filters out only coherent light from a coherent-incoherent mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call