Abstract

We study the coherent exciton transport on Apollonian networks generated by simple iterative rules. The coherent exciton dynamics is modeled by continuous-time quantum walks and we calculate the transition probabilities between two nodes of the networks. We find that the transport depends on the initial nodes of the excitation. For networks up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For networks of higher generation, the transport only shows partial revivals. Moreover, we find that the excitation is most likely to be found at the initial nodes while the coherent transport to other nodes has a very low probability. In the long time limit, the transition probabilities show characteristic patterns with identical values of limiting probabilities. Finally, the dynamics of quantum transport are compared with the classical transport modeled by continuous-time random walks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call