Abstract
A THz radiation source based on electron linear accelerator (linac) has been built and commissioned at the Plasma and Beam Physics (PBP) Research Facility, Chiang Mai University (CMU) in Thailand since 2005. The accelerator system consists of a thermionic cathode RF electron gun, a magnetic bunch compressor in a form of an alpha-magnet, an S-band travelling-wave linac structure, beam steering and focusing magnets, beam and radiation diagnostic instruments, control system and other support components. Electron bunches with an average kinetic energy of about 8 MeV, a bunch charge of 100 pC, and a bunch length of 300 fs can be produced from the PBP-CMU electron linac system. Coherent THz radiation generated via transition radiation technique is used as a source of the THz spectroscopy and THz imaging applications. The measured power spectrum indicates that the radiation obtained from short electron bunches covers the frequency range of 0.15–1.80 THz or the wavenumber range of 5–60 cm−1. Experimental results reveal that a peak radiation power as high as 0.2 MW per micropulse and an average radiation power of 2.5 mW can be obtained. Generation and characterization of the coherent THz transition radiation as well as some examples of experiments to achieve electron bunch length and radiation power spectrum are reported and discussed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.