Abstract

With the development of modern technologies, the exploitation and application of rare earth metals (REMs) have increased parallelly. Consequently, more REMs are entering into the environment and therefore there is a pressing need to assess their potential environmental hazards. Here, a standard toxicity test with wheat (Triticum aestivum) was conducted to investigate the single and mixture toxicity of La and Ce in solutions with different levels of calcium and nitrilotriacetic acid (NTA) and results were deciphered by different modeling approaches. Both La and Ce caused adverse effect to wheat, but the presence of Ca and NTA alleviated their toxicity. The obtained EC50 for [La] or [Ce] changed by more than 28-fold and by 4-fold, respectively, with the increase of Ca or NTA. The biotic ligand model (BLM) explained approximately 93% variation of single La or Ce toxicity. The binding constants obtained were 4.14, 6.67, and 6.59 for logKCaBL, logKLaBL, and logKCeBL respectively. The electrostatic toxicity model (ETM) was proved as effective as the BLM, with R2 = 0.93 for La and R2 = 0.92 for Ce. For La–Ce mixtures, parameters from single toxicity approaches were applied successfully to predict the mixture toxicity with concentration addition (CA) model based on the BLM or ETM theory (R2 = 0.92 and RMSE = 8.56; R2 = 0.90 and RMSE = 9.6, respectively). Thus, the results obtained in this study prove that both ETM and BLM theories are appropriate to predict single and mixture REMs toxicity, providing coherent and promising tools for the risk assessment of REM pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call