Abstract

In this paper, electromagnetic emission at the plasma frequency produced by a short laser pulse in a finite-size plasma layer with a longitudinal density modulation is studied using both analytical theory and particle-in-cell simulations. The radiation mechanism suggests that a laser pulse excites a long-lived plasma wake which, in the presence of ion density modulation with the appropriate period, generates a superluminal satellite capable of matching in phase with vacuum electromagnetic waves. It is found that such a mechanism can be used for generating tunable narrow-band (5%) multi-mJ terahertz pulses with high efficiency (>0.3%) due to ability of superluminal plasma oscillations at the cut-off frequency to diffuse through a plasma that is several times wider than the radiation wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.