Abstract

Current theories of voice production depend critically upon knowledge of the near field flow which emanates from the glottis. While most modern theories predict complex, three-dimensional structures in the near field flow, few investigations have attempted to quantify such structures. Using methods of flow visualization and digital particle image velocimetry, this study measured the near field flow structures immediately downstream of a self-oscillating, physical model of the vocal folds, with a vocal tract attached. A spatio-temporal analysis of the structures was performed using the method of empirical orthogonal eigenfunctions. Some of the observed flow structures included vortex generation, vortex convection, and jet flapping. The utility of such data in the future development of more accurate, low-dimensional models of voice production is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.