Abstract

Numerical computations and laboratory experiments are carried out to investigate the three-dimensional structure of large-scale (coherent) vortices induced by bridge abutments on a flat bed. A finite-volume numerical method is developed for solving the unsteady, three-dimensional Reynolds-averaged Navier–Stokes equations, closed with the k-ω turbulence model, in generalized curvilinear coordinates and applied to study the flow in the vicinity of a typical abutment geometry with a fixed, flat bed. The computed flowfields reveal the presence of multiple, large-scale, unsteady vortices both in the upstream, “quiescent,” region of recirculating fluid and the shear-layer emanating from the edge of the foundation. These computational findings motivated the development of a novel experimental technique for visualizing the footprints of large-scale coherent structures at the free surface. The technique relies on digital photography and employs averaging of instantaneous images over finite-size windows to extract ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.