Abstract

A common feature of magnetized plasmas is the presence of fluctuations, which can lead to fully developed turbulence. Often large events—called bursts—emerge from the remaining low-level turbulence, giving an intermittent character to fluctuations; namely the statistical properties of fluctuations are found to depend on the temporal scale over which the investigation is conducted.In magnetized plasmas, the bursts are generally believed to be due to the presence of magnetic-field-aligned structures. Moreover, it has been experimentally shown that the intermittent events detected in the signals are associated with a relevant contribution to the loss of particles from the plasma.All these observations are common to plasmas spanning a wide range of temperature and density and magnetically confined both in linear and toroidal devices. In particular, in high-temperature plasmas for thermonuclear fusion, research aims at devising suitable ways to control transport by acting on the plasma structures, for instance by biasing the plasma edge using electrodes.This paper gives a characterization of the structures found in magnetized plasmas and of their contribution to the particle transport; moreover, the effect of the velocity shear on structures is addressed. Emphasis will be laid on to the most advanced diagnostics allowing the reconstruction of turbulent structures by optical and electrostatic techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.