Abstract

A study of coherent structures and self-consistent transport is presented in the context of a Hamiltonian mean field, single wave model. The model describes the weakly nonlinear dynamics of marginally stable plasmas and fluids, and it is related to models of systems with long-range interactions in statistical mechanics. In plasma physics the model applies to the interaction of electron "holes" and electron "clumps," which are depletions and excesses of phase-space electron density with respect to a fixed background. In fluid dynamics the system describes the interaction of vortices with positive and negative circulation in a two-dimensional background shear flow. Numerical simulations in the finite-N and in the N--> infinity kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two "macroparticles" (one hole and one clump) and consider the N=2 limit of the model. We show that this limit has a family of symmetric, rotating integrable solutions described by a one-degree-of-freedom nontwist Hamiltonian. A perturbative solution of the nontwist Hamiltonian provides an accurate description of the mean field and rotation period of the dipole. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. This resonance creates islands of integrability that shield the dipole from regions of chaotic transport. For a class of initial conditions, the mean field exhibits an elliptic-hyperbolic bifurcation that leads to the filamentation, chaotic mixing and eventual destruction of the dipole. (c) 2002 American Institute of Physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.