Abstract

In this review, a general algorithm for constructing coherent states of dynamical groups for a given quantum physical system is presented. The result is that, for a given dynamical group, the coherent states are isomorphic to a coset space of group geometrical space. Thus the topological and algebraic structure of the coherent states as well as the associated dynamical system can be extensively discussed. In addition, a quantum-mechanical phase-space representation is constructed via the coherent-state theory. Several useful methods for employing the coherent states to study the physical phenomena of quantum-dynamic systems, such as the path integral, variational principle, classical limit, and thermodynamic limit of quantum mechanics, are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.