Abstract

The problem of building coherent states from non-normalizable fiducial states is considered. We propose a way of constructing such coherent states by regularizing the divergence of the fiducial state norm. Then we successfully apply the formalism to particular cases involving systems with a continuous spectrum: coherent states for the free particle and for the inverted oscillator (p2 − x2) are explicitly provided. Similar ideas can be used for other systems having non-normalizable fiducial states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.