Abstract

We study beyond-mean-field properties of interacting spin-1 Bose gases with synthetic Rashba-Dresselhaus spin-orbit coupling at low energies. We derive a many-body Hamiltonian following a tight-binding approximation in quasi-momentum space, where the effective spin dependence of the collisions that emerges from spin-orbit coupling leads to dominant correlated tunneling processes that couple the different bound states. We discuss the properties of the spectrum of the derived Hamiltonian and its experimental signatures. In a certain region of the parameter space, the system becomes integrable, and its dynamics becomes analogous to that of a spin-1 condensate with spin-dependent collisions. Remarkably, we find that such dynamics can be observed in existing experimental setups through quench experiments that are robust against magnetic fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.