Abstract
We report experimental studies of coherent spin dynamics of donor-bound electrons in high-purity GaAs by using transient differential transmission. The donor-bound exciton transitions, which are not visible in the linear absorption spectrum, are spectrally resolved in the nonlinear differential transmission spectra. The spin beats in the transient differential transmission response, arising from electron spin precession in an external magnetic field, are investigated with the pump and probe coupling to various donor-bound exciton transitions. The spectral dependence of the spin beats provides important information on the polarization selection rule for the underlying donor-bound exciton transitions. The polarization selection rules deduced from these experiments indicate that contributions from higher-energy donor-bound exciton transitions can severely limit the effectiveness of optical spin control using mechanisms such as polarization-dependent optical Stark shifts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.