Abstract

The spin dynamics of an interwell excitons gas has been investigated in n-i-n GaAs/AlGaAs coupled quantum wells (CQWs). In these heterostructures the electron and the hole are spatially separated in neighboring quantum wells by a narrow AlAs barrier, when an electric field is applied. The time evolution kinetics of the interwell exciton photoluminescence has been measured under resonant excitation of the 1sHH intrawell exciton, using a pulsed tunable laser. The formation of a collective exciton phase in time and the temperature dependence of its spin relaxation rate have been studied. The spin relaxation rate of the interwell excitons is strongly reduced in the collective phase. This observation provides evidence for the coherence of the indirect excitons collective phase at temperatures below a critical $T_c$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.