Abstract

The excited states of neutral and charged single InGaAs/GaAs quantum dots are studied using a confocal microspectroscopy technique. Because of their different Coulomb energy shifts, the charged and neutral states of the same quantum dot can be selectively excited. The charge of the quantum dot is controlled by a photo-depletion mechanism. Time-resolved coherent spectroscopy shows that the dephasing time of the excited states is longer when the quantum dot is charged. Rabi oscillation of the excited state of a singly charged quantum dot is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.