Abstract

The Paul Scherrer Institute is planning the construction of a hard-x-ray free-electron laser, the SwissFEL, by 2016, which will produce intense, ultrashort pulses of transversely coherent radiation in the wavelength range 0.1–7 nm, with future extensions to cover the range 0.08–30 nm. Special design considerations include (a) a compact construction, compatible with the status of a national facility, (b) a uniform 100 Hz repetition rate, well suited to sample manipulations and detector readout, (c) flexible wavelength tuning by the electron beam energy and undulator gaps, (d) soft x-rays at approximately 1 nm wavelength, with circular polarization and Fourier-transform-limited pulses, (e) hard x-rays of pulse duration 5–20 fs and (f) an independent source of high-energy, half-cycle terahertz pump pulses. The science case for the Swiss FEL project, which emphasizes the dynamics of condensed matter systems and the damage-free imaging of nanostructures, includes novel considerations that make optimal use of these features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.