Abstract

The coherence of rough sea-surface-scattered acoustic fields decreases with increasing frequency. The frequency-difference autoproduct, a quadratic product of acoustic fields at nearby frequencies, mimics a genuine field at the difference frequency. In rough-surface scattering, the autoproduct's lower effective frequency decreases the apparent surface roughness, restoring coherent reflection. Herein, the recovery of coherent reflection in sea surface scattering via the frequency-difference autoproduct is examined for data collected off the coast of New Jersey during the Shallow Water '06 (SW06) experiment. An acoustic source at depth 40 m and receiver at depth 24.3 m and range 200 m interrogated 160 independent realizations of the ocean surface. The root mean square surface height h was 0.167 m, and broadcast frequencies were 14-20 kHz, so that 2.5 ≤kh cos θ≤ 3.7 for acoustic wavenumber k and incidence angle θ. Measured autoproducts, constructed from scattered constituent fields, show significant coherent reflection at sufficiently low difference frequencies. Theoretical results, using the Kirchhoff approximation and a non-analytic surface autocorrelation function, agree with experimental findings. The match is improved using a numerical strategy, exploiting the relationship between autoproduct-based coherence recovery, the ocean-surface autocorrelation function, and the ocean-surface height spectrum. Error bars computed from Monte Carlo scattering simulations support the validity of the measured coherence recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.