Abstract

We present an experimental and theoretical study of the coherent Rayleigh-Brillouin scattering in gases in the kinetic regime. Gas density perturbation waves were generated by two crossing pump laser beams through optical dipole forces. A probe laser beam was then coherently scattered from the perturbation waves. The line shape of the scattered light was modeled using kinetic theory. The model takes into account the internal energy modes of the gas particles and is applicable to both molecular and atomic gases. We discuss the implication of coherent Rayleigh-Brillouin scattering on kinetic theory and photon matter interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.