Abstract
Recent discovery of the coherent lasing from various disordered materials adds a new dimension to the conventional physics of light propagation in multiply scattering media. It suggests that in the situation, when the propagation of light is diffusive on average, the coherent feedback can be provided by the sparse disorder configurations that efficiently trap a photon, and thus, serve as random resonators. This scenario of random resonators has been substantiated experimentally by the ensemble averaging of the power Fourier transforms of the random emission spectra. In this paper the current status of the experiment and theory of coherent random lasing is reviewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.