Abstract

A review of the salient features of five coherent Raman techniques is given, including typical spectra produced by each technique. The resonant and nonresonant signal contributions in the monochromatic plane wave limit are calculated for: (1) Coherent AntiStokes Raman Spectroscopy(CARS); (2) a polarization technique referred to as ASTERISK; (3) Raman-induced Kerr-effect Spectroscopy(RIKES); (4) Optically Heterodyned RIKES (OHD-RIKES); (5) Stimulated Raman Spectroscopy (SRS). The relevant noise contribution to each of these techniques is developed within the framework of a comparative signal-to-noise analysis, and realistic detection limits are discussed. The OHD-RIKES technique is selected as the most viable of the coherent Raman techniques which satisfies the following criteria: (A) suppression of nonresonant background signals and enhanced signal-to-noise ratio; (b) simplicity of operation and interpretation of results. This is the first known application of optical heterodyne detection and optimization to coherent Raman spectroscopy, and the principles developed are generally applicable to all forms of third-order nonlinear spectroscopu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call