Abstract

We propose a novel approach to detect a low power microwave signal with a frequency of the order of several GHz based on a coherent collective response of quantum states occurring in a superconducting qubits network (SQN). An SQN composes of a large number of superconducting qubits embedded in a low-dissipative superconducting resonator. Our theory predicts that an SQN interacting with the off-resonance microwave radiation, demonstrates the collective alternating current Stark effect that can be measured even in the limit of single photon counting. A design of the layout of three terminals SQN detectors containing 10 flux qubits weakly coupled to a low-dissipative R-resonator and T-transmission line was developed. The samples were fabricated by Al-based technology with Nb resonator. The SQN detector was tested in terms of microwave measurements of scattering parameters and two-tone spectroscopy. A substantial shift of the frequency position of the transmission coefficient drop induced by a second tone pump signal was observed, and this effect clearly manifests a nonlinear multiphoton interaction between the second-tone microwave pump signal and an array of qubits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.