Abstract

We have theoretically and experimentally investigated coherent pump-probe spectra for the $3{S}_{1/2}$-$3{P}_{1/2}$ $D1$ transition of sodium atomic vapor. Probe transmission spectra in the presence of a coupling beam exhibit dramatic changes depending on experimental conditions. In the weak-excitation, low-atomic-density limit, the spectra are mainly characterized by electromagnetically induced transparency (EIT) and saturated absorption, but for the strong-excitation, high-density case, parametric amplification (PA) is dominant, featuring high probe gain and Stokes-wave generation. We have developed a theory that can explain these two seemingly totally different phenomena (EIT and PA) within the same theoretical framework by manipulating a few experimentally controllable parameters, and have successfully reproduced the observed spectra. Other than the main spectral features, many other interesting physical processes have been predicted and observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.