Abstract

Highly vibrationally and rotationally excited hydrogen molecules are of immense interest for understanding and modeling the physics and chemistry of the cold interstellar medium. Using a sequence of two Stark-induced adiabatic Raman passages, we demonstrate the preparation of rotationally excited D2 molecules in the fourth excited vibrational level within its ground electronic state. The nearly complete population transfer to the target state is confirmed by observing both the threshold behavior as a function of the laser power and the depletion of the intermediate level. The vibrational excitation reported here opens new possibilities in the study of the much debated four-center reaction between a pair of hydrogen molecules. Additionally, these rovibrationally excited molecules could be potentially used to generate the high-intensity D- ion beams considered essential for D-T thermonuclear fusion by enhancing the cross section for dissociative electron attachment by 5 orders of magnitude compared to that of the ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.