Abstract
Coherent reasoning under uncertainty can be represented in a very general manner by coherent sets of desirable gambles. In a context that does not allow for indecision, this leads to an approach that is mathematically equivalent to working with coherent conditional probabilities. If we do allow for indecision, this leads to a more general foundation for coherent (imprecise-)probabilistic inference. In this framework, and for a given finite category set, coherent predictive inference under exchangeability can be represented using Bernstein coherent cones of multivariate polynomials on the simplex generated by this category set. This is a powerful generalisation of de Finetti's Representation Theorem allowing for both imprecision and indecision. We define an inference system as a map that associates a Bernstein coherent cone of polynomials with every finite category set. Many inference principles encountered in the literature can then be interpreted, and represented mathematically, as restrictions on such maps. We discuss, as particular examples, two important inference principles: representation insensitivitya strengthened version of Walley's representation invarianceand specificity. We show that there is an infinity of inference systems that satisfy these two principles, amongst which we discuss in particular the skeptically cautious inference system, the inference systems corresponding to (a modified version of) Walley and Bernard's Imprecise Dirichlet Multinomial Models (IDMM), the skeptical IDMM inference systems, and the Haldane inference system. We also prove that the latter produces the same posterior inferences as would be obtained using Haldane's improper prior, implying that there is an infinity of proper priors that produce the same coherent posterior inferences as Haldane's improper one. Finally, we impose an additional inference principle that allows us to characterise uniquely the immediate predictions for the IDMM inference systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.