Abstract
Point cloud registration methods based on Gaussian Mixture Models (GMMs) exhibit high robustness. However, GMM cannot precisely depict point clouds, because the Gaussian distribution is spatially symmetric and local surfaces of point clouds are typically non-symmetric. In this paper, we propose a novel method for rigid point cloud registration, termed coherent point drift with Skewed Distribution (Skewed CPD). Our method employs an asymmetric distribution constructed from the local surface normals and curvature radii. Compared to the Gaussian distribution, this skewed distribution provides a more accurate spatial description of points on local surfaces. Additionally, we integrate an adaptive multiplier to the covariance, which reallocates the weight of the covariance for different components in the probabilistic mixture model. We employ the EM algorithm to address this maximum likelihood estimation (MLE) issue and leverage GPU acceleration. In the M-step, we adopt an unconstrained optimization technique rooted in a Lie group and Lie algebra to attain the optimal transformation. Experimental results indicate that our method outperforms state-of-the-art methods in both accuracy and robustness. Remarkably, even without loop closure detection, the cumulative error of our approach remains minimal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.