Abstract

Photon mapping is a global illumination algorithm which is composed of two steps: photon tracing and photon searching. During photon searching step, each shading point needs to search the photon-tree to find k-neighbouring photons for reflected radiance estimation. As the number of shading points and the size of photon-tree are dramatically large, the photon searching step is time consuming. We propose a parallel photon searching algorithm by using radiance estimation approach for coherent shading points on the Intel® Many Integrated Core (MIC) Architecture. In order to efficiently use single instruction multiple data (SIMD) units, shading points are clustered by similarity first (every cluster contains 16 shading-points), and an initial neighbouring scope is searched from the photon-tree for each cluster. Then we use 16-wide SIMD units by performing k-NN searching from the initial neighbouring scope for those 16 shading-points in a cluster in parallel. We use the method to simulate some global illumination scenes on Intel® Xeon® processors and Intel® Xeon® Phi™ coprocessors. The comparison results with existing photon mapping techniques indicate that our method gives significant improvement in speed with the same accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.